A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection

نویسندگان

  • Rebecca Midgley
  • Katy Moffat
  • Stephen Berryman
  • Philippa Hawes
  • Jennifer Simpson
  • Daniel Fullen
  • David. J. Stephens
  • Alison Burman
  • Terry Jackson
چکیده

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER-Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum)

Regarding high potential of green plants for development of recombinant vaccines, this research was conducted to evaluate expression of a novel recombinant vaccines against Foot and Mouth Disease (FMDV) in tobacco plant. For this purpose, a synthetic gene encoding 129-169 amino acids of foot and mouth disease virus capsid protein VP1 was transferred to tobacco plant via Agrobacterium-mediated g...

متن کامل

Foot-and-mouth disease virus replication sites form next to the nucleus and close to the Golgi apparatus, but exclude marker proteins associated with host membrane compartments.

Picornavirus infection of cells generally results in the production of membranous vesicles containing the viral proteins necessary for viral RNA synthesis. To determine whether foot-and-mouth disease virus (FMDV) infection induced similar structures, and which cellular components were involved, the subcellular distribution of FMDV proteins was compared with protein markers of cellular membrane ...

متن کامل

Foot-and-mouth disease virus replicates independently of phosphatidylinositol 4-phosphate and type III phosphatidylinositol 4-kinases

Picornaviruses form replication complexes in association with membranes in structures called replication organelles. Common themes to emerge from studies of picornavirus replication are the need for cholesterol and phosphatidylinositol 4-phosphate (PI4P). In infected cells, type III phosphatidylinositol 4-kinases (PI4KIIIs) generate elevated levels of PI4P, which is then exchanged for cholester...

متن کامل

The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells.

Foot-and-mouth disease virus (FMDV) is the type species of the Aphthovirus genus of the Picornaviridae: Infection by picornaviruses results in a major rearrangement of the host cell membranes to create vesicular structures where virus genome replication takes place. In this report, using fluorescence and electron microscopy, membrane rearrangements in the cytoplasm of FMDV-infected BHK-38 cells...

متن کامل

Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide.

During co-translational protein import into the endoplasmic reticulum ribosomes are docked onto the translocon. This prevents inappropriate exposure of nascent chains to the cytosol and, conversely, cytosolic factors from gaining access to the nascent chain. We exploited this property of co-translational translocation to examine the mechanism of polypeptide cleavage by the 2A peptide of the foo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2013